Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 728
Filtrar
1.
J Gen Physiol ; 155(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36820799

RESUMO

Tight control of skeletal muscle contractile activation is secured by the excitation-contraction (EC) coupling protein complex, a molecular machinery allowing the plasma membrane voltage to control the activity of the ryanodine receptor Ca2+ release channel in the sarcoplasmic reticulum (SR) membrane. This machinery has been shown to be intimately linked to the plasma membrane protein pannexin-1 (Panx1). We investigated whether the prescription drug probenecid, a widely used Panx1 blocker, affects Ca2+ signaling, EC coupling, and muscle force. The effect of probenecid was tested on membrane current, resting Ca2+, and SR Ca2+ release in isolated mouse muscle fibers, using a combination of whole-cell voltage-clamp and Ca2+ imaging, and on electrically triggered contraction of isolated muscles. Probenecid (1 mM) induces SR Ca2+ leak at rest and reduces peak voltage-activated SR Ca2+ release and contractile force by 40%. Carbenoxolone, another Panx1 blocker, also reduces Ca2+ release, but neither a Panx1 channel inhibitory peptide nor a purinergic antagonist affected Ca2+ release, suggesting that probenecid and carbenoxolone do not act through inhibition of Panx1-mediated ATP release and consequently altered purinergic signaling. Probenecid may act by altering Panx1 interaction with the EC coupling machinery, yet the implication of another molecular target cannot be excluded. Since probenecid has been used both in the clinic and as a masking agent for doping in sports, these results should encourage evaluation of possible effects on muscle function in treated individuals. In addition, they also raise the question of whether probenecid-induced altered Ca2+ homeostasis may be shared by other tissues.


Assuntos
Cálcio , Probenecid , Camundongos , Animais , Probenecid/metabolismo , Probenecid/farmacologia , Cálcio/metabolismo , Carbenoxolona/metabolismo , Carbenoxolona/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Conexinas/metabolismo
2.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36362016

RESUMO

Studies suggest that astrocytic connexins (Cx) have an important role in the regulation of high brain functions through their ability to establish fine-tuned communication with neurons within the tripartite synapse. In light of these properties, growing evidence suggests a role of Cx in psychiatric disorders such as major depression but also in the therapeutic activity of antidepressant drugs. However, the real impact of Cx on treatment response and the underlying neurobiological mechanisms remain yet to be clarified. On this ground, the present study was designed to evaluate the functional activity of Cx in a mouse model of depression based on chronic corticosterone exposure and to determine to which extent their pharmacological inactivation influences the antidepressant-like activity of venlafaxine (VENLA). On the one hand, our results indicate that depressed mice have impaired Cx-based gap-junction and hemichannel activities. On the other hand, while VENLA exerts robust antidepressant-like activity in depressed mice; this effect is abolished by the pharmacological inhibition of Cx with carbenoxolone (CBX). Interestingly, the combination of VENLA and CBX is also associated with a higher rate of relapse after treatment withdrawal. To our knowledge, this study is one of the first to develop a model of relapse, and our results reveal that Cx-mediated dynamic neuroglial interactions play a critical role in the efficacy of monoaminergic antidepressant drugs, thus providing new targets for the treatment of depression.


Assuntos
Astrócitos , Conexinas , Transtorno Depressivo , Animais , Camundongos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Carbenoxolona/farmacologia , Conexinas/efeitos dos fármacos , Conexinas/metabolismo , Fenótipo , Recidiva , Depressão/tratamento farmacológico , Depressão/metabolismo , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/metabolismo
3.
J Neuroinflammation ; 19(1): 244, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195881

RESUMO

BACKGROUND: Neuropathic pain is still a challenge for clinical treatment as a result of the comprehensive pathogenesis. Although emerging evidence demonstrates the pivotal role of glial cells in regulating neuropathic pain, the role of Schwann cells and their underlying mechanisms still need to be uncovered. Pannexin 1 (Panx 1), an important membrane channel for the release of ATP and inflammatory cytokines, as well as its activation in central glial cells, contributes to pain development. Here, we hypothesized that Schwann cell Panx 1 participates in the regulation of neuroinflammation and contributes to neuropathic pain. METHODS: A mouse model of chronic constriction injury (CCI) in CD1 adult mice or P0-Cre transgenic mice, and in vitro cultured Schwann cells were used. Intrasciatic injection with Panx 1 blockers or the desired virus was used to knock down the expression of Panx 1. Mechanical and thermal sensitivity was assessed using Von Frey and a hot plate assay. The expression of Panx 1 was measured using qPCR, western blotting, and immunofluorescence. The production of cytokines was monitored through qPCR and enzyme-linked immunosorbent assay (ELISA). Panx1 channel activity was detected by ethidium bromide (EB) uptake. RESULTS: CCI induced persistent neuroinflammatory responses and upregulation of Panx 1 in Schwann cells. Intrasciatic injection of Panx 1 blockers, carbenoxolone (CBX), probenecid, and Panx 1 mimetic peptide (10Panx) effectively reduced mechanical and heat hyperalgesia. Probenecid treatment of CCI-induced mice significantly reduced Panx 1 expression in Schwann cells, but not in dorsal root ganglion (DRG). In addition, Panx 1 knockdown in Schwann cells with Panx 1 shRNA-AAV in P0-Cre mice significantly reduced CCI-induced neuropathic pain. To determine whether Schwann cell Panx 1 participates in the regulation of neuroinflammation and contributes to neuropathic pain, we evaluated its effect in LPS-treated Schwann cells. We found that inhibition of Panx 1 via CBX and Panx 1-siRNA effectively attenuated the production of selective cytokines, as well as its mechanism of action being dependent on both Panx 1 channel activity and its expression. CONCLUSION: In this study, we found that CCI-related neuroinflammation correlates with Panx 1 activation in Schwann cells, indicating that inhibition of Panx 1 channels in Schwann cells reduces neuropathic pain through the suppression of neuroinflammatory responses.


Assuntos
Carbenoxolona , Neuralgia , Trifosfato de Adenosina/farmacologia , Animais , Carbenoxolona/farmacologia , Carbenoxolona/uso terapêutico , Conexinas/genética , Conexinas/metabolismo , Citocinas/metabolismo , Etídio/metabolismo , Etídio/farmacologia , Etídio/uso terapêutico , Hiperalgesia/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/metabolismo , Probenecid/metabolismo , Probenecid/farmacologia , Probenecid/uso terapêutico , RNA Interferente Pequeno/metabolismo , Células de Schwann
4.
Mol Vis ; 28: 245-256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36284672

RESUMO

Purpose: Purinergic signaling pathways activated by extracellular ATP have been implicated in the regulation of lens volume and transparency. In this study, we investigated the location of ATP release from whole rat lenses and the mechanism by which osmotic challenge alters such ATP release. Methods: Three-week-old rat lenses were cultured for 1 h in isotonic artificial aqueous humor (AAH) with no extracellular Ca2+, hypotonic AAH, or hypertonic AAH. The hypotonic AAH-treated lenses were also cultured in the absence or presence of connexin hemichannels and the pannexin channel blockers carbenoxolone, probenecid, and flufenamic acid. The ATP concentration in the AAH was determined using a Luciferin/luciferase bioluminescence assay. To visualize sites of ATP release induced by hemichannel and/or pannexin opening, the lenses were cultured in different AAH solutions, as described above, and incubated in the presence of Lucifer yellow (MW = 456 Da) and Texas red-dextran (MW = 10 kDa) for 1 h. Then the lenses were fixed, cryosectioned, and imaged using confocal microscopy to visualize areas of dye uptake from the extracellular space. Results: The incubation of the rat lenses in the AAH that lacked Ca2+ induced a significant increase in the extracellular ATP concentration. This was associated with an increased uptake of Lucifer yellow but not of Texas red-dextran in a discrete region of the outer cortex of the lens. Hypotonic stress caused a similar increase in ATP release and an increase in the uptake of Lucifer yellow in the outer cortex, which was significantly reduced by probenecid but not by carbenoxolone or flufenamic acid. Conclusions: Our data suggest that in response to hypotonic stress, the intact rat lens is capable of releasing ATP. This seems to be mediated via the opening of pannexin channels in a specific zone of the outer cortex of the lens. Our results support the growing evidence that the lens actively regulates its volume and therefore, its optical properties, via puerinergic signaling pathways.


Assuntos
Carbenoxolona , Probenecid , Ratos , Animais , Probenecid/farmacologia , Carbenoxolona/farmacologia , Ácido Flufenâmico , Dextranos , Conexinas/metabolismo , Trifosfato de Adenosina/metabolismo
5.
Biol Pharm Bull ; 45(6): 743-750, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35431287

RESUMO

Asthma is a respiratory disease characterized by heterogeneous chronic airway inflammation. Activation of nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome is involved in the development of many pulmonary inflammatory diseases. The role and regulatory mechanism of carbenoxolone (CBX) in ovalbumin (OVA)-induced asthma models are not fully clear. Therefore, the study investigated whether CBX ameliorates airway inflammation and remodeling, as well as its mechanism in OVA induced-inflammation in mice. Wright-Giemsa staining was used to count inflammatory cells in bronchoalveolar lavage fluid (BALF). The level of inflammatory cells infiltration, mucus cell proliferation, and collagen deposition in lung tissue were separately assessed by hematoxylin and eosin, periodic acid-Schiff, and Masson trichrome staining, respectively. Airway resistance (AR) was measured by non-invasive airway system. Immunohistochemical assay was used to observe NLRP3 expression area. The expression of nuclear factor-kappaB (NF-κB), p-NF-κB, inhibitor of kappaB (IκB)-α, p-IκB-α, NLRP3, pro-caspase-1, caspase-1, and interleukin (IL)-1ß in lung tissue were measured using quantitative real-time PCR or Western blotting. Our results showed that CBX can significantly attenuate the leukocyte count and the percentage of eosinophils and neutrophils in the BALF, peribronchial inflammation, airway mucus secretion, collagen deposition area, and AR in OVA-induced airway inflammation. In addition, the expression of p-NF-κB, p-IκB-α, NLRP3 and related factors were dramatically alleviated after CBX treatment. These data suggest that CBX has a significant protective effect on allergic airway inflammation by suppressing the activation of NLRP3 inflammasome through NF-κB pathway in asthmatic mice.


Assuntos
Asma , NF-kappa B , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Líquido da Lavagem Broncoalveolar , Carbenoxolona/metabolismo , Carbenoxolona/farmacologia , Caspase 1/metabolismo , Modelos Animais de Doenças , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ovalbumina/farmacologia
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(3): 405-410, 2022 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-35426805

RESUMO

OBJECTIVE: To investigate the inhibitory effect of RSL3 on the proliferation, invasion and migration of cisplatinresistant testicular cancer cells (I-10/DDP) and the effect of carbenoxolone on the activity of RSL3 against testicular cancer. METHODS: MTT assay was used to evaluate the survival rate of I-10/DDP cells following treatment with RSL3 (1, 2, 4, 8, 16 or 32 µmol/L) alone or in combination with carbenoxolone (100 µmol/L) or after treatment with Fer-1 (2 µmol/L), RSL3 (4 µmol/L), RSL3+Fer-1, RSL3+carbenoxolone (100 µmol/L), or RSL3+Fer-1+carbenoxolone. Colony formation assay was used to assess the proliferation ability of the treated cells; wounding-healing assay and Transwell assay were used to assess the invasion and migration ability of the cells. The expression of GPX4 was detected using Western blotting, the levels of lipid ROS were detected using C11 BODIPY 581/591 fluorescent probe, and the levels of Fe2+ were determined with FerroOrange fluorescent probe. RESULTS: RSL3 dose-dependently decreased the survival rate of I-10/DDP cells, and the combined treatment with 2, 4, or 8 µmol/L RSL3 with carbenoxolone, as compared with RSL3 treatment alone, resulted in significant reduction of the cell survival rate. The combination with carbenoxolone significantly enhanced the inhibitory effect of RSL3 on colony formation, wound healing rate (P=0.005), invasion and migration of the cells (P < 0.001). Fer-1 obviously attenuated the inhibitory effects of RSL3 alone and its combination with carbenoxolone on I-10/DDP cells (P < 0.01). RSL3 treatment significantly decreased GPX4 expression (P=0.001) and increased lipid ROS level (P=0.001) and Fe2+ level in the cells, and these effects were further enhanced by the combined treatment with carbenoxolone (P < 0.01). CONCLUSION: Carbenoxolone enhances the inhibitory effect of RSL3 on the proliferation, invasion and migration of cisplatin-resistant testicular cancer cells by promoting RSL3-induced ferroptosis.


Assuntos
Ferroptose , Neoplasias Testiculares , Carbenoxolona/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Corantes Fluorescentes/farmacologia , Humanos , Lipídeos , Masculino , Neoplasias Embrionárias de Células Germinativas , Espécies Reativas de Oxigênio
7.
Can J Physiol Pharmacol ; 100(5): 412-421, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34855519

RESUMO

Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including central obesity, hypertension, insulin resistance, dyslipidemia, and hyperglyemia. MetS is found to be a positive predictor of cardiovascular morbidity and mortality. The present study was planned to test the efficacy of vitamin D3 supplementation as compared with cortisol inhibition on MetS parameters. Wistar rats were allocated into four groups: control, untreated MetS, and MetS treated with either vitamin D3 (10 µg/kg) or carbenoxolone (50 mg/kg). MetS was induced by combination of high-fat diet and oral fructose. After the induction period (8 weeks), MetS was confirmed, and treatment modalities started for a further 4 weeks. Compared with untreated MetS, vitamin D3- and carbenoxolone-treated rats showed significant reduction in blood pressure, body mass index, Lee index, waist circumference, retroperitoneal fat, and improvement of dyslipidemia. Meanwhile, treatment with carbenoxolone significantly lowered the elevated liver enzymes, and vitamin D3 resulted in improved insulin sensitivity, enhanced glucose uptake by muscles, and replenished glycogen content in the liver and muscles near control levels. In conclusion, although treatment with vitamin D3 or carbenoxolone reduced the risk factors associated with MetS, vitamin D3 was effective in ameliorating insulin resistance which is the hallmark of MetS.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Animais , Glicemia/metabolismo , Carbenoxolona/farmacologia , Carbenoxolona/uso terapêutico , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , Síndrome Metabólica/metabolismo , Ratos , Ratos Wistar
8.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638588

RESUMO

BACKGROUND: carbenoxolone, which is a derivative of glyceretic acid, is actively used in pharmacology for the treatment of diseases of various etiologies. In addition, we have shown carbenoxolone as an effective inducer of mitochondrial permeability transition pore in rat brain and liver mitochondria. METHODS: in the course of this work, comparative studies were carried out on the effect of carbenoxolone on the parameters of mPTP functioning in mitochondria isolated from the liver of control and alcoholic rats. RESULTS: within the framework of this work, it was found that carbenoxolone significantly increased its effect in the liver mitochondria of rats with chronic intoxication. In particular, this was expressed in a reduction in the lag phase, a decrease in the threshold calcium concentration required to open a pore, an acceleration of high-amplitude cyclosporin-sensitive swelling of mitochondria, as well as an increase in the effect of carbenoxolone on the level of mitochondrial membrane-bound proteins. Thus, as a result of the studies carried out, it was shown that carbenoxolone is involved in the development/modulation of alcohol tolerance and dependence in rats.


Assuntos
Alcoolismo/tratamento farmacológico , Alcoolismo/metabolismo , Carbenoxolona/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Animais , Cálcio/metabolismo , Ciclosporina/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Ratos
9.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L466-L476, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34231389

RESUMO

Allergic asthma is a chronic airway inflammatory response to different triggers like inhaled allergens. Excessive ATP in fluids from patients with asthma is considered an inflammatory signal and an important autocrine/paracrine modulator of airway physiology. Here, we investigated the deleterious effect of increased extracellular ATP (eATP) concentration on the mucociliary clearance (MCC) effectiveness and determined the role of ATP releasing channels during airway inflammation in an ovalbumin (OVA)-sensitized mouse model. Our allergic mouse model exhibited high levels of eATP measured in the tracheal fluid with a luciferin-luciferase assay and reduced MCC velocity determined by microspheres tracking in the trachea ex vivo. Addition of ATP had a dual effect on MCC, where lower ATP concentration (µM) increased microspheres velocity, whereas higher concentration (mM) transiently stopped microspheres movement. Also, an augmented ethidium bromide uptake by the allergic tracheal airway epithelium suggests an increase in ATP release channel functionality during inflammatory conditions. The use of carbenoxolone, a nonspecific inhibitor of connexin and pannexin1 channels reduced the eATP concentration in the allergic mouse tracheal fluid and dye uptake by the airway epithelium, providing evidence that these ATP release channels are facilitating the net flux of ATP to the lumen during airway inflammation. However, only the specific inhibition of pannexin1 with 10Panx peptide significantly reduced eATP in bronchoalveolar lavage and decreased airway hyperresponsiveness in OVA-allergic mouse model. These data provide evidence that blocking eATP may be a pharmacological alternative to be explored in rescue therapy during episodes of airflow restriction in patients with asthma.


Assuntos
Trifosfato de Adenosina/imunologia , Asma/imunologia , Carbenoxolona/farmacologia , Conexinas/imunologia , Proteínas do Tecido Nervoso/imunologia , Mucosa Respiratória/imunologia , Traqueia/imunologia , Animais , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/patologia , Conexinas/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microesferas , Peptídeos/imunologia , Peptídeos/farmacologia , Mucosa Respiratória/patologia , Traqueia/patologia
10.
Mol Med Rep ; 24(1)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34013377

RESUMO

Carbenoxolone (CBX) is primarily used to relieve various types of neuropathic and inflammatory pain. However, little is known concerning the role of CBX in acute pain and its functional mechanisms therein and this was investigated in the present study. Rats underwent toe incision and behavioral tests were performed to assess mechanical hypersensitivity. The expression levels of pannexin 1 (Px1) and connexin 43 (Cx43) were detected using western blot analysis 2, 4, 6 or 24 h after toe incision, and the expression of TNF­α, IL­1ß and P substance (SP) was determined by ELISA; Px1 and Cx43 expression was also examined by immunofluorescence staining. At 2, 6 and 12 h post­toe incision, the postoperative pain threshold was significantly reduced, which was subsequently recovered at 2 and 6 h post­surgery following pretreatment with CBX or pannexin 1 mimetic inhibitory peptide. CBX reduced Px1 levels at 4 and 24 h post­incision. However, Cx43 levels were reduced by CBX as little as 2 h post­surgery. Furthermore, CBX not only distinctly decreased the levels of Px1 and Cx43, but also reduced the co­localization of Px1 or Cx43 with glial fibrillary acidic protein, 2 h after incision. It was also observed that the protein levels of inflammatory makers (IL­1ß, SP and TNF­α) showed a tendency to decline at 2, 4, 6 and 24 h after incision. Collectively, the expression of Px1 and Cx43 in astrocytes may be involved in pain behaviors diminished by CBX, and CBX potentially reduces acute pain by decreasing Px1 and Cx43 levels. Px1 and Cx43 from spinal astrocytes may serve important roles in the early stages and maintenance of acute pain, while preoperative injection of CBX has the potential to relieve hyperalgesia.


Assuntos
Dor Aguda/tratamento farmacológico , Dor Aguda/metabolismo , Carbenoxolona/farmacologia , Dor Aguda/genética , Animais , Astrócitos/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Hiperalgesia/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley
11.
Gen Comp Endocrinol ; 305: 113734, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33548254

RESUMO

Regulation of glucocorticoids (GCs), important mediators of physiology and behavior at rest and during stress, is multi-faceted and dynamic. The 11ß hydroxysteroid dehydrogenases 11ß-HSD1 and 11ß-HSD2 catalyze the regeneration and inactivation of GCs, respectively, and provide peripheral and central control over GC actions in mammals. While these enzymes have only recently been investigated in just two songbird species, central expression patterns suggest that they may function differently in birds and mammals, and little is known about how peripheral expression regulates circulating GCs. In this study, we utilized the 11ß-HSD inhibitor carbenoxolone (CBX) to probe the functional effects of 11ß-HSD activity on circulating GCs and central GC-dependent gene expression in the adult zebra finch (Taeniopygia guttata). Peripheral CBX injection produced a marked increase in baseline GCs 60 min after injection, suggestive of a dominant role for 11ß-HSD2 in regulating circulating GCs. In the adult zebra finch brain, where 11ß-HSD2 but not 11ß-HSD1 is expressed, co-incubation of micro-dissected brain regions with CBX and stress-level GCs had no impact on expression of several GC-dependent genes. These results suggest that peripheral 11ß-HSD2 attenuates circulating GCs, whereas central 11ß-HSD2 has little impact on gene expression. Instead, rapid 11ß-HSD2-based regulation of local GC levels might fine-tune membrane GC actions in brain. These results provide new insights into the dynamics of GC secretion and action in this important model organism.


Assuntos
Glucocorticoides , Aves Canoras , 11-beta-Hidroxiesteroide Desidrogenases , Animais , Carbenoxolona/farmacologia , Expressão Gênica , Glucocorticoides/farmacologia , Hidroxiesteroide Desidrogenases/genética
12.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572565

RESUMO

Connexin gap junctions (Cx GJs) enable the passage of small molecules and ions between cells and are therefore important for cell-to-cell communication. Their dysfunction is associated with diseases, and small molecules acting as modulators of GJs may therefore be useful as therapeutic drugs. To identify GJ modulators, suitable assays are needed that allow compound screening. In the present study, we established a novel assay utilizing HeLa cells recombinantly expressing Cx43. Donor cells additionally expressing the Gs protein-coupled adenosine A2A receptor, and biosensor cells expressing a cAMP-sensitive GloSensor luciferase were established. Adenosine A2A receptor activation in the donor cells using a selective agonist results in intracellular cAMP production. The negatively charged cAMP migrates via the Cx43 gap junctions to the biosensor cells and can there be measured by the cAMP-dependent luminescence signal. Cx43 GJ modulators can be expected to impact the transfer of cAMP from the donor to the biosensor cells, since cAMP transit is only possible via GJs. The new assay was validated by testing the standard GJ inhibitor carbenoxolon, which showed a concentration-dependent inhibition of the signal and an IC50 value that was consistent with previously reported values. The assay was demonstrated to be suitable for high-throughput screening.


Assuntos
Carbenoxolona/farmacologia , Comunicação Celular/efeitos dos fármacos , Conexina 43/metabolismo , AMP Cíclico/metabolismo , Técnicas Biossensoriais , Conexina 43/antagonistas & inibidores , Conexina 43/genética , Junções Comunicantes/efeitos dos fármacos , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Luciferases
13.
Neurotoxicology ; 83: 89-105, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33412218

RESUMO

The aggregation of Aß plays a major role in the progression of Alzheimer's disease (AD) and induces neuroinflammation, neurodegeneration and cognitive decline. Recent studies have shown that the soluble aggregates of Aß are the major culprits in the development of these aberrations inside the brain. In this study, we investigated the neuroprotective potential of carbenoxolone (Cbx), which has been found to possess anti-inflammatory and nootropic properties. Male SD rats (250-300 g) were divided into the four groups (n = 8 per group): (1) sham control rats injected with vehicles, (2) Aß 1-42 group rats injected i.c.v. with Aß 42 oligomers (10 µl/rat), (3) Aß 1-42+Cbx group rats injected i.c.v. with Aß 42 oligomers (10 µl/rat) and i.p. with carbenoxolone disodium (20 mg/kg body weight) for six-weeks and (4) Cbx group rats injected i.p. with carbenoxolone disodium (20 mg/kg body weight) for six-weeks. Progressive learning and memory deficits were seen through a battery of behavioral tests and a significant increase in the expressions of GFAP and Iba-1 was observed which resulted in the release of pro-inflammatory cytokines post Aß oligomer injection. The levels of BDNF, Bcl-2 and pCREB were decreased while Bax, caspase-3, caspase-9 and cytochrome c levels were induced. Also, neurotransmitter levels were altered and neuronal damage was observed through histopathological studies. After Cbx supplementation, the expressions of GFAP, IBA-1, pro-inflammatory cytokines, iNOS, nNOS and nitric oxide levels were normalized. The expression levels of pro-apoptotic markers were decreased and neurotrophin levels were restored. Also, neurotransmitter levels and neuronal profile were improved and progressive improvements in behavioural performance were observed. Our results demonstrated that Cbx might have prevented the Aß induced neurodegeneration and cognitive decline by inhibiting the neuroinflammation and inducing BDNF/CREB signalling. These findings suggest that Cbx can be explored as a potential therapeutic agent against the progression of AD.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Carbenoxolona/farmacologia , Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Encefalite/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides , Animais , Apoptose/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Encefalite/induzido quimicamente , Encefalite/metabolismo , Encefalite/fisiopatologia , Proteínas Ligadas por GPI/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Memória/efeitos dos fármacos , Monoaminoxidase/metabolismo , NF-kappa B/metabolismo , Fragmentos de Peptídeos , Fosforilação , Ratos Sprague-Dawley , Transdução de Sinais
14.
SLAS Discov ; 26(3): 420-427, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32914684

RESUMO

In vertebrates, intercellular communication is largely mediated by connexins (Cx), a family of structurally related transmembrane proteins that assemble to form hemichannels (HCs) at the plasma membrane. HCs are upregulated in different brain disorders and represent innovative therapeutic targets. Identifying modulators of Cx-based HCs is of great interest to better understand their function and define new treatments. In this study, we developed automated versions of two different cell-based assays to identify new pharmacological modulators of Cx43-HCs. As HCs remain mostly closed under physiological conditions in cell culture, depletion of extracellular Ca2+ was used to increase the probability of opening of HCs. The first assay follows the incorporation of a fluorescent dye, Yo-Pro, by real-time imaging, while the second is based on the quenching of a fluorescent protein, YFPQL, by iodide after iodide uptake. These assays were then used to screen a collection of 2242 approved drugs and compounds under development. This study led to the identification of 11 candidate hits blocking Cx43-HC, active in the two assays, with 5 drugs active on HC but not on gap junction (GJ) activities. To our knowledge, this is the first screening on HC activity and our results suggest the potential of a new use of already approved drugs in central nervous system disorders with HC impairments.


Assuntos
Bioensaio , Conexina 43/genética , Drogas em Investigação/farmacologia , Neuroglia/efeitos dos fármacos , Medicamentos sob Prescrição/farmacologia , Automação Laboratorial , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzoxazóis/química , Cálcio/metabolismo , Carbenoxolona/farmacologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Conexina 43/antagonistas & inibidores , Conexina 43/metabolismo , Corantes Fluorescentes/química , Expressão Gênica , Humanos , Iodetos/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Ácido Meclofenâmico/farmacologia , Neuroglia/citologia , Neuroglia/metabolismo , Compostos de Quinolínio/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Imagem com Lapso de Tempo
15.
Zhonghua Nan Ke Xue ; 26(1): 24-30, 2020 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-33345473

RESUMO

OBJECTIVE: To investigate the role of the pannexin-1 (Panx1) protein in the invasion and migration of testicular cancer Tcam-2 cells and its possible action mechanism. METHODS: Tcam-2 cells were treated with carbenoxolone (CBX) at 100 µmol/L and probenecid (PBN) 200 µmol/L. Then the intercellular fluorescence transmission was assessed by real-time fluorescence assay, the extracellular ATP concentration measured by chemi-luminescence immunoassay, the invasive and migratory abilities of the Tcam-2 cells detected by Transwell assay, and the expressions of the proteins Panx1, p-ERK1/2, ERK1/2, vimentin, MMP-9 and E-cadherin in the TM3 Leydig cells and testicular cancer Tcam-2 cells determined by Western blot. RESULTS: Western blot showed that the expression of the Panx1 protein was significantly higher in the testicular cancer Tcam-2 cells than in the TM3 Leydig cells (2.79 ± 0.17 vs 1.00 ± 0.06, P<0.05). The rates of intercellular fluorescence transmission in the Tcam-2 cells treated with CBX and PBN were markedly decreased as compared with the blank control group (ï¼»61.54 ± 3.30ï¼½% and ï¼»68.06 ± 4.03ï¼½% vs ï¼»99.50 ± 3.12ï¼½%, P<0.01), and so were the extracellular ATP concentrations (ï¼»57.06 ± 5.80ï¼½% and ï¼»56.42 ± 7.70ï¼½% vs ï¼»110 ± 8.16ï¼½%, P<0.01). The numbers of migrated Tcam-2 cells in the CBX and PBN groups were significantly reduced in comparison with that in the control (11.5 ± 1.11 and 8.25 ± 1.23 vs 331.00 ± 30.80, P<0.05), and so were those of the invaded ones (11.75 ± 3.77 and 11.5 ± 3.5 vs 89.00 ± 13.09, P<0.01). CBX and PBN significantly down-regulated the expression of p-ERK1/2 as compared with that in the blank control group (0.538 ± 0.05 and 0.476 ± 0.02 vs 0.98 ± 0.03, P<0.05), as well as those of vimentin (0.541 ± 0.09 and 0.705 ± 0.07, P<0.01) and MMP-9 (0.439 ± 0.08 and 0.557 ± 0.065, P<0.01) but up-regulated that of E-cadherin (3.896 ± 0.06 and 3.551 ± 0.04, P<0.01). CONCLUSIONS: The Panx1 protein is highly expressed in testicular cancer Tcam-2 cells. CBX and PBN can inhibit the function of the panneixn1 channel and reduce the invasive and migratory abilities of the Tcam-2 cells, which is associated with the decreased expression of the p-ERK1/2 protein.


Assuntos
Movimento Celular , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias Testiculares/patologia , Carbenoxolona/farmacologia , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Metaloproteinase 9 da Matriz , Probenecid/farmacologia
16.
Pflugers Arch ; 472(10): 1435-1446, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32870378

RESUMO

We describe a human and large animal Langendorff experimental apparatus for live electrophysiological studies and measure the electrophysiological changes due to gap junction uncoupling in human and porcine hearts. The resultant ex vivo intact human and porcine model can bridge the translational gap between smaller simple laboratory models and clinical research. In particular, electrophysiological models would benefit from the greater myocardial mass of a large heart due to its effects on far-field signal, electrode contact issues and motion artefacts, consequently more closely mimicking the clinical setting. Porcine (n = 9) and human (n = 4) donor hearts were perfused on a custom-designed Langendorff apparatus. Epicardial electrograms were collected at 16 sites across the left atrium and left ventricle. A total of 1 mM of carbenoxolone was administered at 5 ml/min to induce cellular uncoupling, and then recordings were repeated at the same sites. Changes in electrogram characteristics were analysed. We demonstrate the viability of a controlled ex vivo model of intact porcine and human hearts for electrophysiology with pharmacological modulation. Carbenoxolone reduces cellular coupling and changes contact electrogram features. The time from stimulus artefact to (-dV/dt)max increased between baseline and carbenoxolone (47.9 ± 4.1-67.2 ± 2.7 ms) indicating conduction slowing. The features with the largest percentage change between baseline and carbenoxolone were fractionation + 185.3%, endpoint amplitude - 106.9%, S-endpoint gradient + 54.9%, S point - 39.4%, RS ratio + 38.6% and (-dV/dt)max - 20.9%. The physiological relevance of this methodological tool is that it provides a model to further investigate pharmacologically induced pro-arrhythmic substrates.


Assuntos
Coração/fisiologia , Preparação de Coração Isolado/métodos , Adulto , Animais , Carbenoxolona/farmacologia , Eletrocardiografia/métodos , Acoplamento Excitação-Contração , Feminino , Coração/efeitos dos fármacos , Humanos , Preparação de Coração Isolado/instrumentação , Masculino , Miocárdio/metabolismo , Suínos
17.
Biochem Biophys Res Commun ; 532(3): 482-488, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32892951

RESUMO

Leucine-rich repeat containing family 8 (LRRC8) proteins form the volume-regulated anion channel (VRAC). Recently, they were shown to be required for normal differentiation and fusion of C2C12 myoblasts, by promoting membrane hyperpolarization and intracellular Ca2+ signals. However, the mechanism by which they are involved remained obscure. Here, using a FRET-based sensor for VRAC activity, we show temporary activation of VRAC within the first 2 h of myogenic differentiation. During this period, we also observed a significant decrease in the intracellular Cl- concentration that was abolished by the VRAC inhibitor carbenoxolone. However, lowering the intracellular Cl- concentration by extracellular Cl- depletion did not promote differentiation as judged by the percentage of myogenin-positive nuclei or total myogenin levels in C2C12 cells. Instead, it inhibited myosin expression and myotube formation. Together, these data suggest that VRAC is activated and mediates Cl- efflux early on during myogenic differentiation, and a moderate intracellular Cl- concentration is necessary for myoblast fusion.


Assuntos
Cloretos/metabolismo , Proteínas de Membrana/metabolismo , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Animais , Carbenoxolona/farmacologia , Diferenciação Celular/fisiologia , Fusão Celular , Linhagem Celular , Citosol/metabolismo , Transferência Ressonante de Energia de Fluorescência , Transporte de Íons/efeitos dos fármacos , Camundongos , Desenvolvimento Muscular/fisiologia , Mioblastos Esqueléticos/efeitos dos fármacos
18.
Exp Dermatol ; 29(10): 970-979, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32866991

RESUMO

Mutations in GJB2 encoding Connexin 26 (CX26) are associated with hearing loss and hyperproliferative skin disorders of differing severity including keratitis-ichthyosis-deafness (KID) and Vohwinkel syndrome. A 6-year-old Caucasian girl who presented with recurrent skin rashes and sensorineural hearing loss harboured a heterozygous point mutation in GJB2 (c.424T > C; p.F142L). To characterize the impact of CX26F142L on cellular events. Plasmids CX26WT, CX26F142L, CX26G12R (KID) or CX26D66H (Vohwinkel) were transfected into HeLa cells expressing Cx26 or Cx43 or into HaCaT cells, a model keratinocyte cell line. Confocal microscopy determined protein localization. MTT assays assessed cell viability in the presence or absence of carbenoxolone, a connexin-channel blocker. Co-immunoprecipitation/Western blot analysis determined Cx43:Cx26 interactions. Quantitative real-time polymerase chain reaction assessed changes in gene expression of ER stress markers. Dye uptake assays determined Connexin-channel functionality. F142L and G12R were restricted to perinuclear areas. Collapse of the microtubule network, rescued by co-treatment with paclitaxel, occurred. ER stress was not involved. Cell viability was reduced in cells expressing F142L and G12R but not D66H. Unlike G12R that forms "leaky" hemichannels, F142L had restricted permeability. Cell viability of F142L and G12R transfected cells was greater in HeLa cells expressing Cx43 than in native Cx-free HeLa cells. Co-immunoprecipitation suggested a possible interaction between Cx43 and the three mutations. Expression of CX26F142L and G12R results in microtubule collapse, rescued by interaction with Cx43. The GJB2 mutations interacted with Cx43 suggesting that unique Cx43:Cx26 channels are central to the diverse phenotype of CX26 skin-related channelopathies.


Assuntos
Transporte Biológico/genética , Conexina 26/genética , Conexina 26/metabolismo , Exantema/genética , Perda Auditiva Neurossensorial/genética , Microtúbulos/ultraestrutura , Carbenoxolona/farmacologia , Sobrevivência Celular/genética , Criança , Conexina 43/metabolismo , Estresse do Retículo Endoplasmático/genética , Feminino , Expressão Gênica , Células HaCaT , Células HeLa , Heterozigoto , Humanos , Microtúbulos/efeitos dos fármacos , Mutação , Paclitaxel/farmacologia , Transfecção , Moduladores de Tubulina/farmacologia
19.
Int J Biol Macromol ; 164: 45-52, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32679335

RESUMO

Nanotechnology based antimicrobial drugs are developed to enhance their properties to combat multidrug resistant microbes. Carbenoxolone (CBX) is a semi-synthetic derivate of a natural substance from the licorice plant, with anti- (inflammatory, fungal, viral, microbial, fibrotic and cancer) properties. Though used to treat gastric ulcers, its low aqueous stability, low bioavailability and toxicity limited the drug's utility. To enhance its antimicrobial activity and reduce cytotoxicity, a controlled release nanoformulation was developed using natural biodegradable polymer chitosan (CS) as a carrier which is biocompatible, nontoxic with placid antimicrobial property. UV-visible spectroscopy, electron microscopy, and Fourier transform infrared spectroscopy were used for characterization of the resultant CS-CBX nanoparticles (NPs). They were spherical with uniform dispersion, ~200 nm in size with surface charge of +18.6 mV and drug encapsulation of >80%. Drug release kinetics exhibited a controlled release of 86% over 36 h following zero order kinetics. The anti-microbial activity against common pathogenic Gram -ve and +ve bacteria and yeast increased ~2-fold with a concomitant 4-fold reduction in cytotoxicity assessed using human lung adeno carcinoma (A549) cells. This study demonstrates the affirmative aspects of CS-CBX NPs as a promising antibacterial agent and may facilitate repositioning of the drug for diverse applications.


Assuntos
Carbenoxolona/química , Quitosana/química , Nanopartículas/química , Anti-Infecciosos/farmacologia , Candida albicans/efeitos dos fármacos , Carbenoxolona/farmacologia , Carbenoxolona/toxicidade , Linhagem Celular Tumoral , Quitosana/farmacologia , Quitosana/toxicidade , Portadores de Fármacos , Liberação Controlada de Fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Teste de Materiais , Testes de Sensibilidade Microbiana , Nanopartículas/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
20.
J Pharmacol Toxicol Methods ; 105: 106888, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32579903

RESUMO

INTRODUCTION: Voltage and calcium-sensing optical recording (VSOR and CSOR, respectively) from human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have been validated for in vitro evaluation of cardiotropic effects of drugs. When compared to electrophysiological devices like microelectrode array, multi-well optical recordings present a lower sample rate that may limit their capacity to detect fast depolarization or propagation velocity alterations. Additionally, the respective sensitivities of VSOR and CSOR to different cardiac electrophysiological effects have not been compared in the same conditions. METHODS: FluoVolt and Cal520 dyes were used in 96 well format on hPSC-CMs to report sodium channel block by lidocaine and propagation slowing by the junctional uncoupler carbenoxolone at three recording frequencies (60, 120 and 200 Hz) as well as their sensitivity to early and late repolarization delay. RESULTS: Sodium channel block led to a dose-dependent decrease of the VSOR signal rising slope that was improved by an increased sampling frequency. In contrast, the CSOR signal rising slope was only decreased at the highest concentration with no influence from the sampling rate. A similar result was obtained with carbenoxolone. Early repolarization delay by Bay K8644 showed the same effects on VSOR and CSOR signal durations while repolarization slowing by dofetilide had a significantly stronger prolongating effect on the VSOR signal at the lowest concentration. DISCUSSION: VSOR showed a higher capacity to detect sodium channel block, propagation slowing and modest late repolarization delay than CSOR. Increasing the sampling rate improved the detection threshold of VSOR for excitability and conduction velocity alterations.


Assuntos
Fármacos Cardiovasculares/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Miócitos Cardíacos/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Cálcio/metabolismo , Carbenoxolona/farmacologia , Células Cultivadas , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microeletrodos , Miócitos Cardíacos/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA